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Abstract

The continuous decline in the cost of DNA sequencing has contributed both
positive and negative feelings in the academia and research community. It has
now become possible to harvest large amounts of genetic data, which researches
believe their study will help improve preventive and personalised healthcare,
better understanding of diseases and response to treatments. However, there
are more information embedded in genes than are currently understood, just as
a genomic data contains information of not just the owner, but relatives who
might not subscribe to sharing them. Unrestricted access to genomic data can
be privacy invasive, hence the urgent need to regulate access to them and develop
protocols that would allow privacy-preserving techniques in both computations
and analysis that involve these very sensitive data. In this work, we discuss
how a careful combination of cryptographic primitives such as homomorphic
encryption, can be used to privately implement common algorithms peculiar
to genome-wide association studies (GWAS). This obviously comes at a cost,
where we have to accommodate the trade-off between speed of computations
and privacy.

1 Introduction

Biomedical research has long shown that human genome contain data from which
information about their individual owners, and those related to them can be ex-
tracted [1, 2, 3, 4]. A lot of privacy-sensitive information are laced all over genomic
data, which constitutes enormous worry for individuals whose data are available in
electronic format [5, 6, 7]. The benefits of continuous research involving the genomic
data are equally rife, these include: preventive and personalised healthcare, patient’s
response to treatment, predisposition to diseases, identification of new drug targets
and perhaps a better understanding of cancer [1, 8, 4, 9, 10, 11, 12, 13, 14]. On the
other hand, when genomic data is used for research or processed by medical personnels,
they become exposed to possible misuse and even loss to unauthorised hands. In the
face of this possibility, the risk of re-identifying individuals from an available genomic
data calls for serious concern [5, 9, 15, 4, 3, 7], and has been recognised as a realistic
threat. Other unwanted scenarios which could occur as direct consequence of leaking
genomic data include: stigmatisation, discrimination, loss of insurance and even loss
of employment opportunities for persons whose genomic data is public [16].

What is more worrisome about misuse of genomic data is the fact that the genome
has longevity, when leaked, it can neither be revoked nor modified. So, it is obvious that
this piece of data is highly sensitive and requires protection that should be adaptive to
future security threats. Hence one can claim that any realistic solution should be one
which, the security guarantees of the underlying primitives used for implementation



should withstand post quantum attacks. Therefore privacy protection techniques have
been proposed as an adaptive solution by the cryptography community. The aim
will be to allow productive research that utilise genomic data, while eliminating the
privacy-risks inherent around these procedures.

Being that no standalone solution can best fit the challenge posed, it is considered
that a good combination of ethical, legal and technological constraints can be employed,
to properly manage the risks of privacy leaks that are otherwise possible within this
research domain. Owing to this premise, our work seeks to contribute a technological
solution to the underlying problem.

In the era of distributed computing, even the medical field has not been left out. It
has been common for researchers and medical personnels to work without boundaries
of country borders, albeit, via a virtual collaboration [17, 7, 2]. This means that more
data can now be shared for research purposes and even diagnosis of diseases [6]. It
also presents us with the possibility of allowing cloud services process medical data,
even when they do not reside in the same country as the owners of the data. This need
for collaboration, data sharing and cloud processing of genomic data further pushes for
privacy-preserving secure computing protocols [2, 17].

Having a genomic dataset and controlling access to it is the main aim of this work.
In a nutshell, this means that while these data is not available to the public, experts
who need them for research are granted restricted access to only subsets relevant to
their work [15]. Such access for processing data may include string searching and com-
parison, as well as GWAS computations.

Genome Wide Association Studies: As highlighted in [1, 18], the first ever human
genome sequencing was achievable in 2001, after directly gulping a whooping US-$300
million from the initial budget of US-$3 billion. Fast-forward 6 years later, and the
same feat is feasible for about US-$100,000. In 2006 [18], it was anticipated that in
2014, a further reduction to US-$1,000 was possible for sequencing the human genome.
Recent literature [19, 11] have even suggested that a meagre US-$100, will be a reality
in the very near future. If that be the case, one can deduce that amongst other possi-
bilities, a direct consequences of affordable genomic data would be the torrential flow of
genomic data in silico. It is obviously a good development for researchers, who would
heavily rely on these data to improve on their research, refine and optimise diagnosis
and many others positive possibilites. With a wealth of data in the form of genomic
data lying at the disposal of researchers and medical personnels, learning and inferring
from these data becomes an indisputable objective.

Without loss of generality in description, GWAS can simply be simplified to the
activities presented above, it is about gathering genetic data, processing them and
relying on them to investigate relationship (association) of genes to common known
diseases. It will be possible to even detect unknown diseases and the effect of drugs on
treatments. With GWAS researchers can now measure, analyse and predict previously
unknown genetic influence on a person, this can help in early detection and prevention
of certain diseases, as well as personalised healthcare. For useful gene-disease associa-
tions to be estimated, some computations become handy, and these will be discussed in
subsection 2.1. Nonetheless, most of the computations can easily put the data owners
at privacy-risk. It has led to the suggestion that protection of genomic data is a ne-
cessity, to address possible ethical, political, technological and privacy concerns. From
the technological solution approach, we hope to address the privacy-threats using cryp-
tographic primitives. Just to mention, with genomic data, data anonymization is not
enough guarantee to avoid re-identification and also, conventional encryption might
not offer much better protection against envisaged privacy-threats. These can simply
be derived from the fact that the said data have longevity, their importance persists
even after the demise of the data owner.

Related Works: Realising the privacy-sensitive nature of genomic data, researchers



have delved into search for privacy-preserving solutions, in the hope to protect pri-
vacy of owners while still being able to process and compute operations using these
data. Some of these works are discussed here. Privacy-preserving GWAS spans across
more possibilities than just GWAS-Computations. According to [15], other important
categories include:

• Private string searching and comparison.

• Private release of aggregated data.

• Private read mapping.

of course, this list is not in itself exhaustive, but we will only consider works that
directly address computations very peculiar to GWAS. As early as 1999 [20, 21, 22],
some researchers had anticipated privacy risks involved with genomic data. So they
proposed denominalization and de-identification as protection schemes, to preserve
privacy. This did not stop re-identification attacks from being hugely successful, as
discussed in [9]. Other authors [23] have subsequently recommended Trusted Third
Parties and Semitrusted Third Parties but then, it is not always easy to completely
trust a third party, who could still be susceptible to coercion, compulsion and even
corruption to be compromised. More recently in [24], attempts were made to analyse
genomic data while avoiding privacy-invasion of participants of the data. Summarily,
they adopted differential privacy as a privacy-preserving technique, and documented to
have obtained utility with their procedure. However, addition of noise using differential
privacy is not a silver bullet to deflate possible re-identification. Especially when the
published data can be augmented with other side information. But most importantly is
the fact that differential privacy contains noise, which will evidently affect the utility, no
matter the degree of noise. This is a huge trade-off, but it is only left for the geneticists
and biostatisticians to decide if the noise only contributes a negligible disturbance to
the final results.

While the last paper approach to resolving possible privacy breaches is via differ-
ential privacy, [25] chooses to adopt a different approach. The authors adopt ho-
momorphic encryption as a tool to enable analysis of these privacy sensitive data.
Homomorphic Encryption holds a lot of promises, and if its capabilities are optimally
harnessed, can become a very productive primitive in guaranteeing privacy for pro-
cessing genomic data. In this work, different scenarios are considered which include
a setting that allows outsourcing encrypted genomic data to a cloud service. In the
mentioned scenario, operations on the data by the cloud are still possible, without
divulging the decryption keys but still hopeful of achieving utility.

Homomorphic Encryption was further relied on by some other team of researchers [26].
A shot was given to providing privacy guarantees on processing of genomic data, only
that this time the focus was on homomorphic encryption scheme whose structures rely
on RLWE (Ring Learning With Error). [26] documents an efficiency-improvement
from existing implementation of GWAS using homomorphic encryption. They showed
that χ2 test for independence was achievable with improvement in both computation
and communication time from existing implementations.

Subsequently, another team of researchers went further to demonstrate how much
information can be extracted from computation of genomic data, even on the encrypted
domain [27]. Basic genomic algorithms which are common to GWAS are shown to be
implementable on encrypted genotype and phenotype data. Lauter et al. [27] report re-
sults that preserve utility of the original implementation (computation on unencrypted
genomic data). Some of the algorithms demonstrated in their work include:

• Estimation Maximization (EM) algorithm for haplotyping.

• The D
′

and r2-measures of linkage disequilibrium.



• Cochran-Armitage Test for Trend.

Also worth mentioning is the fact that this implementation relied on Homomorphic
Encryption with assumption on RLWE.
Scenario and Assumptions: For the sake of this work, we will explicitly spell out the
scenario in which our proposed protocol is targeted, and necessary assumptions. Our
setting adopts the semi-honest security model, hence we assume that all parties will
correctly follow the protocol by performing the right computations, but with a curiosity
to observe the transitions of the protocol with a view to learning more details than
they are statutorily allowed to learn. We assume that a researcher Alice is interested
in a particular computation, say Minor Allele Frequency (MAF). The data source or
cloud Bob, who happens to have the computational powers not acquired by Alice, is
trusted to perform all requests by performing the computation on encrypted data. The
result of the computation (which however, is also encrypted), is returned to Alice.

2 Preliminaries

Up until here, we have established a clear direction to the challenge we hope to address.
A genomic dataset is at our disposal and we intend to preserve privacy of data in the
face of effective computations. So, we propose a protocol that encrypts all genomic
data and outsources storage of these data to a semi-honest cloud service who possesses
the computational requirements to run these expensive computations. It will be per-
tinent to have a mental picture of typical algorithms that will be deployed to perform
computation, and how our cryptographic privacy enhancing technology optimally fits
for a solution. Most of the algorithms are statistical operations that are often required
by biostatisticians when trying to learn information from a dataset. And just like most
statistical equations require simple arithmetic operation at the least, we show that our
adopted primitive (homomorphic encryption), does provide us with the capabilities to
perform simple addition, multiplication, and with a little more effort division.

2.1 GWAS Computation

Only a few statistical computations that are usually handy in GWAS are presented.

Minor Allele Frequency: Finding the ratio for which an allele of interest that
is at a locus, occurs in a particular population of study is the allele frequency. MAF
is therefore the allele frequency of the least common allele, which appears in that
population. If we have a gene with two possible alleles say A and S, then in a monoploid
gene setting, the allele frequency f() for A is simply computed as follow:

f(A) =

∑n
1 AA∑n

1 AA +
∑m

1 SS
(1)

where N = n+m is the total population sample, and n and m are the counts of alleles A
and S respectively. That was rather too easy, owing to the fact that we only have two possible
genotypes, which are results of pure combination of possible alleles. What happens when we
consider diploid gene settings? Using the same alleles at a particular locus, we consider the
following expressions: AA, AS and SS. Just like we did above, we shall try to compute the
frequency of the allele A. Let genotype distribution be as follows: A = 19,AS = 21,SS = 07.

f(A) =
2 ∗

∑n
1 AA +

∑k
1 AS

2(
∑n

1 AA +
∑k

1 AS +
∑m

1 SS)
(2)

The total genotype count in this case is N = n+ k+m, where n, k and m are counts for
AA, AS and SS respectively. to compute the allele frequency of A using the values already



presented, we will have

f(A) =
2 ∗AA + AS

2 ∗ (AA + AS + SS)
=

2 ∗ 19 + 21

2 ∗ (19 + 21 + 07)
=

59

94
= 0.6277 (3)

Since we only have two possible alleles in this population, the least common allele should be
S, with MAF of (1− 0.6277) = 0.3723

To calculate the genotype frequencies we have AA = n
N , AS = k

N , SS = m
N

Linkage Disequilibrium: This is the non-random association of alleles at different
loci. Unlike the single locus alleles considered previously, we will be considering two loci but
mainly retaining the basic statistics we have developed thus far. The aim of this test is to
suggest if SNPs at particular loci of interest behave or occur in such a manner that is not
believed to be random. So we present two loci with the following alleles: A, a and S, s.
When two genotype at different loci are independent of each other, Linkage Equilibrium is
considered to have occurred. Simply put, this means that Linkage Disequilibrium happens
when there is some degree of dependency between the two loci of interest. Leading to the
Hardy-Weinberg Equilibrium (HWE ), which is said to hold if allele frequencies are preserved
in a population across generations, except otherwise altered by an external factor, including
evolutional influences. To measure linkage disequilibrium, the following equations are used

to compute D
′

and r2.

D
′

=


f(AS)f(as)−f(As)f(aS)
min(f(A)f(s),f(a)f(S))

if f(AS)f(aa)− f(As)f(aS) > 0

f(AS)f(as)−f(As)f(aS)
min(f(A)f(S),f(a)f(s))

if f(AS)f(aa)− f(As)f(aS) < 0

(4)

r2 =
(f(AS)f(as)− f(As)f(aS))2

f(A)f(S)f(a)f(s)
(5)

On the assumption that the allele frequencies can be obtained from encrypted genomic
data, then it follows that the above computations can be computed.

2.2 Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic primitive that allows for simple arithmetic
operations over a ciphertext space. A HE scheme can either allow for simple addition, multi-
plication or even both. We have an additive scheme if it can only allow for addition operations
and a fully homomorphic encryption (FHE) scheme if both addition and multiplication can
be harnessed from the scheme. Give two messages m1 and m2, an encryption and decryption
functions Enc() and Dec() respectively. We have that:

Enc(m1)⊕ Enc(m2)→ Enc(m1 + m2) : Dec(Enc(m1 + m2)) := (m1 + m2) (6)

Enc(m1)⊗ Enc(m2)→ Enc(m1 ∗m2) : Dec(Enc(m1 ∗m2)) := (m1 ∗m2) (7)

In 2009, [28] proposed an FHE scheme, which reduced its security to some well known
difficult lattice problem. Further works were done to improve the original scheme, due to the
complexity involved in implementation. Bringing about works like [29, 30, 31], which have
been able to present a levelled homomorphic encryption scheme, that is capable of handling
multiplication to a certain degree or depth, before the ciphertext becomes un-decryptable.
The main idea is that for every operation, some noise is added to the ciphertext, and when
this noise grows above a certain threshold, decryption of the ciphertext becomes a problem.
While addition contributes small degree of noise, multiplication allows the noise to grow
very fast. These schemes often reduce their security to lattice based problems like shortest
vector problem (SVP) including ring learning with error problems (RLWE). Because the



multiplication function obtainable from these homomorphic encryptions are not arbitrary
(as to control the noise growth), it is labelled levelled or somewhat homomorphic encryption
(SHE). To show that the multiplication depth can only go as deep as the specified level,
during parameter setup.

With a SHE scheme handy, and statistical algorithms available, we can then deploy this
primitive to solve the arithmetic operations we identified earlier. It can be demonstrated that
with SHE, these algorithms can be computed while preserving the utility and not trading
privacy of the genomic data concerned.

3 Privacy Preserving χ2 Statistic

In GWAS computation, X2 is often computed and compared to the χ2 distribution. A
common test can be applied to know if the HWE holds in a given distribution. An example
of a computation is presented below:

X2 =
∑

i={AA,AS,SS}

(Oi − Ei)
2

Ei
(8)

Oi and Ei represent observed frequency allele and Expected frequency allele of the popula-
tion. Since the frequency allele can easily be computed by simple addition and multiplication,
and the required arithmetic operations are obtainable in our discussed Homomorphic En-
cryption. It can be concluded that the χ2 statistics can be computed in a privacy-preserving
manner, over encrypted datasets. Other computations such as the Cochran-Armitage Test
for Trend can equally be computed using this procedure, and even meta-analysis of data
from different experiments can be produced as well. For simplicity, we shall show how X2

test statistic can be computed, borrowing the suggestions in [27, 26, 32], with a subtle
modification. Every SNP representation is assumed to belong to a genotype classification.
And for a single locus test, we produce 3 encryptions, Enc(x)c,d : x ∈ {0, 1}, c and d are
row and column indexes respectively. The rows depict the SNPs for participants, while the
columns depict genotype (AA, AS, SS). Assuming that all loci representation correctly fall

into a genotype class, then the summation of the row values
∑N

c=1 will produce n, k and m,
recall that N = n + k + m. It then becomes feasible to calculate the sum of the genotypes
by simply adding the encrypted values for each column. This will require a constant cost of
3N numbers of additions using homomorphic encryption.

X2 =
(n− EAA)2

EAA
+

(k − EAS)2

EAS
+

(m− ESS)2

ESS
=

(n− EAA)2 ∗ Eb ∗ Ec + (k − EAS)2 ∗ Ea ∗ Ec + (n− ESS)2 ∗ Ea ∗ Ec

EAA ∗ EAS ∗ ESS
(9)

Again, to compute the X2 test statistic, it becomes evident that this computation will
require at least, (3N + 5) additions, 14 multiplications and a single division. We delib-
erately ignore the computation of Ei={AA,AS,SS}, since those can be easily precomputed and
stored. But if we have a (2× 2) or (2× 3) contingency table as presented in [32], we can still
show that these complex looking computations can be reduced to additions, multiplications,
and a single division. Since our SHE scheme can perform addition and multiplication ef-
ficiently, we are left to show that a trivial non-cryptographically secure means can be used
to efficiently carry out the division. We offer this trivial solution, with the knowledge that a
cryptographically secure division will involve a multiparty computation, of which we do not
wish to discuss, due to the complexities involve. The non-trivial solution would be as follows:

Enc(x)

Enc(y)
, r ← R,

Enc(x)⊗ Enc(r)

Enc(y)⊗ Enc(r)
(10)

Both numerator and denominator are presented to the researcher, who can decrypt them
and perform the division in clear. The test statistic is therefore obtained and compared to
the appropriate p−value that was chosen, with 1 degree of freedom. The obtained result will
not lose utility, and yet achieves a privacy guarantee on the semi-honest settings. The cloud



to whom data processing is outsourced, does not know what values are encrypted, but can
perform operations using only the ciphertext, and the researcher who queries the database
for X2 value can be sure to obtain a correct value.

Complexity: The complexity of the proposed protocol can only be as efficient as the
HE scheme deployed to solve the problem. For instance, when computing allele frequencies,
several additions and a few multiplications are required. Which means that the computational
complexity can be bounded by the computational complexity of the underlying HE scheme.
However, if an additive HE scheme is to be deployed, we envisage an extra cost associated
with communication. This is because multiplication in additive schemes are often performed
as a multi-party computation (MPC). For the simple case of computing X2, we have a cost
of 3N + 5 additions, 14 multiplications and 1 division. Which will involve many rounds of
communication for an additive homomorphic encryption scheme.

For future work, we strongly recommend adoption of SHE scheme over an additive HE
scheme like Paillier .We will attempt to address the issue of division over encrypted domain.
This should be an important addition to this work, and perhaps one can leverage on that to
perform even faster computations of statistical GWAS algorithms.

4 Conclusion

With major enhancement of the described cryptographic primitives, we foresee further de-
ployment of privacy enhancing techniques to create protocols for processing of genomic data.
We believe that this is an achievable feat in the near future, as to prepare for the bloat in
availability of genomic data in silico. This protocol should be able to preserve the utility of
results as obtainable in unencrypted data scenario and better than anonymised data imple-
mentation. Though the performance values will be expensive as a result of the encrypted
data and encoding needed to be done, we believe that with further attention paid to this area
of research, performance optimization is very realistic.
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